High Pressure Processing: Opportunities and Challenges

Kathiravan Krishnamurthy
Assistant Professor
Institute for Food Safety and Health
kkrishn2@iit.edu

2015 Clean Label Conference
March 31 to April 1
High Pressure Processing (HPP)

• A novel food processing technology
 • Early studies were done in late 1800s.
 • Engineering advancements made the technology feasible

• Pressures of up to 1000 MPa (145,000 psi) is applied to foods to extend the shelf life
 • Typical pressure range: 300 to 700 MPa

• Environmentally friendly – no by-products

• Flurry of R&D and commercial developments around the world
Why HPP?

- Extended shelf-life & improved food safety
 - Inactivates yeast, molds, bacterial cells and most viruses
- Minimal change in food flavor, color, texture, nutritional value
 - Food maintains fresh-like characteristics
 - Improved food quality
- HPP enables food manufacturers to use fewer/no additives (Public concern with chemical preservatives in foods) → CLEAN LABEL
- Can alter products high in protein/starch
 - Novel food products
200 elephants weighing 3000 kg each standing on a piston with a diameter of a CD, create a pressure of 600 MPa, 6000 bar or 90,000 psi.
Where Can We Find High Pressures??

Marina Trench: 10,994 meters deep
How does High Pressure Processing Work?

- Pressure is transmitted instantaneously & uniformly throughout the food product independent of size and shape
 - Food will not be crushed
- No gradient of effectiveness from outside to inside
Principles of High Pressure Processing (HPP)

- Product compressed, returns to original shape; water relatively incompressible
- Due to adiabatic heating, temperature of the product increases (water: 3 °C increase for every 100 MPa; temperature increase depends on the food components)
- Batch or semi-continuous process
- Can alter some food products
Pre-packaged (Batch) Production

24 L High Pressure Unit
IFSH pilot plant
Max: 890 MPa @ 131°C
HPP Mechanism of Inactivation

- Lethal effects on microorganisms
 - affects cell morphology, membranes, spore coats
 - denatures proteins & enzymes
 - permeability of membranes \rightarrow leakage
- Sensitivity to HHP
 - Gram Negatives $>$ Yeast/Mold $>$ Gram Positives $>$ Spores
- Product specific; inactivation dependent on pH, RH, medium/food, exposure time, pressure level, etc.
Listeria monocytogenes

Untreated

Pressure-treated

600 MPa
2 min
Chemical Effects

- Disruption hydrophobic & ionic bonds, unlike heat which breaks covalent bonds
 - different textures created
- Enzyme response varies; inactivated or stimulated depending on tertiary structure, internal charges
- Vitamins, flavors, color compounds minimally affected
- Gels starchy substances (e.g. viscosity of pectin is increased \rightarrow less pectin is sufficient)
Products on International Market
Product Examples: Oysters

Key Drivers

Shucking, Labor intensive

Export Opportunities

Food Safety Concern
Raw Oysters

Outputs & Outcomes

HPP in Shell-Shucking
Increased yields

Extended Shelf-life

Enhanced Safety
‘Cold Pasteurization’

Research Challenges

Validation of Viral and Bacterial kill step
Optimization of process
Packaging and distribution
Shelf-life & Sensory Studies

www.theperfectoyster.com
Product Examples: RTE Meats

Key Drivers

- Current shelf-life Limited
- Food Safety Concern
- Fermented Products *E.coli*
- Chilled products, *Listeria*

Outputs & Outcomes

- Extended shelf-life
- New and existing markets
- Enhanced Safety
- ‘Cold Pasteurization’

Research Challenges

- Validation of Bacterial kill step
- Packaging and distribution
- Shelf-life & Sensory Studies
Product Examples: Horticultural Products

Key Drivers
- Freshness & Convenience
- Food Safety Concern
 - *E.coli/Salmonella*

Outputs & Outcomes
- Minimal effect on texture/flavour/nutrition
- Extended shelf-life
- Enhanced Safety
 - ‘Cold Pasteurization’

Research Challenges
- Enzyme inactivation/inhibition
- Validation of bacterial kill step
- Packaging and distribution
- Shelf-life & Sensory Studies
Chemical Analyses of HPP treated juices

- Viscosity
- Brix
- pH
- Titratable acids
- Colour
- Browning
- Dissolved oxygen
- Sedimentation

HPP had no significant effect compared with untreated juice.
Nutrient Analysis Orange Juice: Ascorbic acid and β-carotene

- **L-ascorbic acid:**
 - ~7% loss after HPP (600 MPa, 1 min)
 - No significant difference in vitamin C loss during storage (90 days, 4 °C)

- **β-carotene:**
 - HPP did not affect β-carotene content
 - Content did not decrease with storage
Pectin Methylesterase (PME) Deactivation

Navel Oranges

<table>
<thead>
<tr>
<th>Time (min) at 600 MPa</th>
<th>(Adjusted) pH 3.0</th>
<th>Early-season pH 3.55</th>
<th>Mid-season pH 3.65</th>
<th>Late-season pH 4.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (control)</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>1</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>2</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>5</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>10</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>15</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
</tbody>
</table>
Valencia orange juice: Consumer Perception of “Freshness”

Baxter et al., 2005
High pressure inactivation of Salmonella in orange juice

Conditions needed for 5-log reduction

<table>
<thead>
<tr>
<th>Pressure (MPa)</th>
<th>Processing Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>369</td>
</tr>
<tr>
<td>350</td>
<td>136</td>
</tr>
<tr>
<td>400</td>
<td>55</td>
</tr>
<tr>
<td>450</td>
<td>25</td>
</tr>
<tr>
<td>500</td>
<td>13</td>
</tr>
</tbody>
</table>

Bull et al., 2005
HPP Treated Feline Calicivirus

Lee et al., 2002
Example: High Pressure Processing Shellfish and Virus Inactivation

Feline Calicivirus

Hepatitis A

Grove et al., 2008
J. Food Protection
Some HPP opportunities

- Extended shelf-life yogurts
- Fresh fruit and yogurt products
- Milk cheeses
 - Flavor of raw milk cheeses
 - Improved texture and yield
- Post packaging microbial contamination removal for many products (juices, milk, salads, wine, cheeses)
- Selected functional properties
 - in products and ingredients
- Improved microbial quality of bioactive products
HPP opportunities for food

- **Yogurts**
 - **Full-fat**: prevent rise of acidity after packaging & maintained initial # viable lactic acid bacteria and yogurt texture
 - **Low-fat types**: creamy, thick consistency requiring no additional polysaccharides, improved flavor and texture

- **Milk for reduced fat cheese**
 - Improved yield, coagulation and texture scores
 - More flavour development

- **Synergy** (e.g. lacticin 3147 (bacteriocin) and 250 MPa)
 - Staphylococcus & Listeria 1 and 2 log reduction separately and 6 log when combined.
HPP opportunities for food

- **Wine**
 - Reduction of SO$_2$
 - Control of flavor development and enzyme reactions.
 - Stop (in package) fermentation
- **Fruit and vegetables**
 - Superior fresh flavour quality juices
 - Superior quality salsa’s, guacamoles
 - Extended shelf-life salads and dips
 - Flavour and texture of fruit salads
 - Disinfestation
Pressure Assisted Thermal Sterilization (PATS)

- Sterilization of foods → combined effect of temperature and HPP
 - Inactivation of spores → shelf stable foods
- FDA Approval
- Initial temperatures (60 to 90 °C) → final temperatures (80 to 130 °C)

Compared to traditional canning:
- Shorter time
- Better Quality
HPP Market segmentation matrix

ESL, Reduce Cost, New functions

Value Creation

Low Value-Added

Low

High

Food Safety Profile

Source: Dr. Patrick Dunne, US Army Natick (retired) & Avure
Other applications of HPP

- Tenderization of meat
 - Modification of protein structure
- Nutrients enhancement (more study is needed)
 - Some pressure levels are shown to increase antioxidants and other nutrients
 - Other pressure levels are shown to decrease nutrient content (minimal compared to thermal processing)
Limitations of HPP

- Bacterial spores are not inactivated by pressure alone
 - Most suitable for acid foods
 - Products need refrigeration for shelf-life and non-acid foods for food safety without other preservation measures
- Some food enzymes resistant to pressure
- Can alter food products with high protein or starch contents
- Batch process or semi batch process
- Cost is a factor, but technological advances have brought equipment costs down & made commercialisation feasible

(Cost reduced 50,000 times over the last 100 years !)
Other processing techniques

Thermal → Nonthermal

High pressure

Pulsed electric field

Electron beam irradiation

UV Light & Pulsed light
Food Processing Balance

Need to destroy
Pathogens
Spoilage Organisms
Enzymes

Optimize
Flavor
Texture
Color
Nutritional quality

VS
References

- IFT’s Nonthermal Processing Division’s news bulletin featuring hpp and other technologies
Acknowledgements

- Dr. Alvin Lee, Institute for Food Safety and Health
- Mr. Armand Paradis, Institute for Food Safety and Health
- Dr. Kees Versteeg, CSIRO, Australia
Questions?
Kathiravan Krishnamurthy
kkirishn2@iit.edu