Blog

Update on GMO Labeling: Where do We Stand; Where are We Headed?

Posted on:April 3, 2017

April 3, 2017Global Food Forums, Inc.The following is an excerpt from the “2016 Protein Trends & Technology Report: Formulating with Proteins,” sponsored by Arla Foods Ingredients, Amco Proteins, Givaudan, Orochem Technologies, RiceBran Technologies and Synergy. 
Label Claims-regulatory-Chip English-2016 PTT[Please note: This presentation was given before President Obama signed legislation that will require labeling of genetically modified ingredients for the first time. The legislation, passed by Congress on July 29, 2016, will require most food packages to carry a text label, a symbol or an electronic code readable by smartphone that indicates whether the food contains GMOs. The Agriculture Department has two years to write the rules, which will pre-empt the Vermont law that kicked in March 2016.]

Today’s consumers want to know all about their food. But what limits are there on the powers of a government body to tell food manufacturers what they must tell their consumers? The GMO debate cuts to the heart of that question.

Vermont passed a GMO labeling law that goes into effect July 1, 2016. Connecticut and Maine also passed GMO labeling laws, but their laws would only go into effect if other states in the region passed similar regulations. Of course, it is difficult for a food manufacturer to comply with label regulations for one state only.

“In 2013, mandatory labeling laws, similar to the Vermont law, were introduced in both the U.S. House and Senate, but neither passed. In 2016, legislation establishing a national voluntary labeling framework preempting individual state laws was introduced and passed in Senate committee, but was subsequently
blocked by the full Senate,” explained Chip English, a partner at the law firm Davis Wright Tremaine LLP, in his 2016 Protein Trends & Technologies Seminar presentation titled “Update on GMO Labeling: Where do We Stand; Where are We Headed?”

FDA regulations preempt states from doing anything that interferes with the Nutrition Facts panel. In November 2015, the FDA did publish voluntary and non-binding guidance on GMO labeling. The FDA does not like the phrase, “genetically modified organisms,” and instead prefers the term “produced with genetic engineering.” The FDA also said that foods produced with genetic engineering are safe, and that there are no differences in food produced with or without genetic engineering.

The Vermont law requires that if a food is produced with genetic engineering, that information must be disclosed. The Vermont law refers specifically to genetically modified organisms, rather than addressing the processing issue. The Vermont law requires that the message must be screened and in bold letters on the ingredient panel. The law also allows the FDA message that there is no significant difference in foods produced with or without genetic engineering. Vermont law exempts finished foods from GMO labeling, if the animal from which the food was obtained had been given GMO animal feed. This means Vermont cheese does not have to have a GMO label, even though GMO feed was used for the cow.

The First Amendment right to free speech applies to states and localities. There was an excellent recent Arizona Law Review article on compelled speech under the First Amendment, according to English, discussing whether or not it is lawful. Currently, it is impossible to reconcile decisions by various courts with respect to compelled speech under the First Amendment.

The Grocery Manufacturers of America and the International Dairy Foods Association both sued Vermont to prevent the law from going into effect July 1. The local Federal district court did not rule in their favor, and the groups appealed. The appeal was heard on Oct 16, 2015, but, as of May 2016, nothing has been heard from the court of appeals. Currently, food businesses are spending hundreds of millions of dollars figuring out how to comply with the Vermont law.

So what are companies currently doing? Campbell Soup has said that it will implement voluntary labeling of GMO ingredients. While simultaneously calling for federal standards for labeling products with GMOs, Mars, General Mills, Kellogg and Danone recently announced that they also will comply with the Vermont law for national labeling.

Where does it stop, and how do conscientious food companies comply? Currently, gluten free labeling is voluntary. Will health-conscious consumers demand the labeling of gluten next? English believes that the Vermont law will become the de facto law of the country, unless the second circuit rules in a timely manner. And, ultimately this issue may need to be decided by the Supreme Court. In the meantime, marketing and packaging groups are left with difficult decisions.

“Update on GMO Labeling: Where do We Stand, Where are We Headed?” Chip English, Partner, firm Davis Wright Tremaine LLP, 202-973-4272, chipenglish@dwt.com


From Gluten-free to Whole Grain: Formulating On-trend Products

Posted on:March 21, 2017

March 22, 2017Global Food Forums, Inc.The following is an excerpt from the “2016 Protein Trends & Technology Report: Formulating with Proteins,” sponsored by Arla Foods Ingredients, Amco Proteins, Givaudan, Orochem Technologies, RiceBran Technologies and Synergy. 

Maskus provided formulas using fava beans as the source of pulse flour that they have worked with to produce non-gluten pan bread with higher levels of protein. [For larger PDF of chart, click on image.]

The year of 2016 has been designated the “International Year of Pulses,” stated Heather Maskus, Project Manager at the Canadian International Grains Institute (Cigi), in her opening remarks. Her presentation, “From Gluten-free to Whole Grain: Formulating On-trend Products,” focused upon using combinations of pulses and whole grains to formulate foods—such as cereals, snacks, pastas, noodles, pan bread and crackers—with higher levels of protein.

Maskus noted that pulses are defined as the dry, edible seeds of legume plants and include lentils, peas, chickpeas and beans [but excludes soybeans; soybeans are not a pulse, because their seed is not dry]. Pulses have applications in whole, ground, dehulled, flaked and fractionated forms; the latter is usually produced through air fractionation and wet extraction.

“Pulse flours are nutrient-dense ingredients,” Maskus stated. “They are a high source of dietary fiber (14-25% dry weight) and are a protein source at about 20-30% dry weight.” Pulses are high in lysine but low in methionine and cysteine, while cereal grains are typically the opposite. “Combining pulse and cereal grains is, therefore, of interest to create more complete protein profiles in products.”

Maskus described research that focused on the development of extruded breakfast cereal that use pulses. Pea fiber (6.5%) added to a blend of corn meal (31.5%), and whole pea and semolina flour (56.5%), enhanced extrusion due to its starch characteristics. “The goal for protein levels in pulsebased products is 5g of protein per 30g serving,” she stated.

“However, this blend would not be able to make a protein claim, because the protein digestibility of peas at 87.9 is not high enough.” Maskus indicated that Cigi is continuing this work, using oats and buckwheat as complementary amino acid sources to improve end-product protein quality.

Maskus presented data showing the effects of various milling methods to produce whole yellow pea flour and resulting quality parameters of extruded snacks. She noted that similar formulation principles exist for snacks and cereals. Maskus stated that “extrusion of whole yellow pea flours is more controlled than for the split yellow pea flours. The additional fiber in whole yellow pea flour acts as a nucleation agent and controls air cell size within the final product.”

Pasta was one of the first products investigated for fortification with pulses, due to characteristically low fiber and nutrient contents. Pulse flour milling was undertaken to produce low-, medium and high- (21, 24 and 26.4%) protein content flour and blended with durum semolina (30:70). The advantages of including pulses in pasta include enhanced protein content, quality and nutrient density.

As pulse protein increased, it was necessary to change processing parameters. The challenges, Maskus noted, include sticky dough crumb due to the soluble proteins present in pulses which affect extrusion. Drying cycles should be modified to low temperature-long time to minimize color changes. Maskus stated that a “2% reduction in water addition for yellow pea semolina and the use of a fine semolina pulse ingredient will help to improve the appearance and cooked pasta firmness.” Cooked firmness of the pasta was increased with increasing pulse addition.

Maskus also discussed their work with pulses in flour blends for the development of gluten-free breads. (See chart “Formulation for Gluten-free Pan Bread with Pulse Flours” for products with 30 and 50% fava bean flour that resulted in breads of 5 and 6g protein, respectively.) The breads were also eligible to carry dietary fiber nutrient content claims with 4 and 5g of fiber.

Maskus noted that the gluten-free breads formulated with fava bean flour showed similar loaf characteristics and resulted in breads with a firmer texture and smaller cell diameters compared to the control bread.

“Pulse-based products offer several advantages, including gluten-free potential, as well as a product with higher protein and fiber,” concluded Maskus. “Pulses offer a sustainable protein that is non-GMO with low allergenicity. They can meet many of the requirements for a clean label and have increasing global recognition.”

Maskus went on to note that “challenges include texture, color and flavor, and also meeting protein claims. However, the blending of grain ingredients and processing modifications can solve many of these.”

Heather Maskus, MSc, Project Manager, Canadian International Grains Institute, hmaskus@cigi.ca


Formulating with Proteins: Processing and Flavor Challenges

Posted on:February 23, 2017

February 23, 2017Global Food Forums, Inc.The following is an excerpt from the “2016 Protein Trends & Technology Report: Formulating with Proteins,” sponsored by Arla Foods Ingredients, Amco Proteins, Givaudan, Orochem Technologies, RiceBran Technologies and Synergy. 

The amount of protein has no impact on sweet taste perception in neutral pH, ready-to-mix protein beverages. However, changing from a liquid to a solid at the same protein load did increase the level of sweetener needed. Understanding the factors that influence protein flavor will allow the formulator to optimize flavor in the finished product. [For a larger PDF of the chart, click on image.]

Protein is in high demand by consumers, and the flavor of protein ingredients is vital to product success. A recent conjoint survey of 440 consumers at NCSU revealed the attributes consumers seek include the label claim, protein type, protein amount, sweetener and metabolic benefits. Different clusters of consumers are searching for different attributes.

In consumers who regularly consume protein beverages, whey protein is the most desired protein, followed by milk protein, said MaryAnne Drake, Ph.D., Professor of Food Science at North Carolina State University, in her 2016 Protein Trends & Technologies Seminar presentation titled “Formulating with Proteins: Processing and Flavor Challenges.” These consumers seek products with 20 or 25g of protein. They are searching for naturally sweetened products, as well as products that offer satiety and great taste.

All protein sources do not taste the same. “Principal component biplot analysis by a trained panel reveals that [even] the same ingredient from different suppliers does not taste the same,” said Drake. This is true for all types of protein ingredients. As protein content increases, protein flavors increase in intensity. This is true for both dairy and soy proteins, and these protein ingredient flavors carry through into the finished product.

Proteins with the mildest flavor profile are preferred by consumers. Labeling that says a product contains higher levels of protein improves acceptability, but label claims are not as important as actual flavor.

Challenges differ, depending on the protein ingredient and application. Lipid oxidation and sulfur degradation products are Different lipid oxidation values translate to different flavor perception, as well as to different functional properties—including heat stability and foam stability. Longer storage increases lipid oxidation for both whey and milk proteins, said Drake. Maillard reactions also play a role in beverages and increase at higher storage temperature and with higher lactose content.

In whey obtained from cheese, the cheese-making process, the whey manufacturing process and the final product processing all impact shelf stability and flavor of the whey. When the manufacturer is aware of potential issues, they can control and minimize flavor impact.

Spray-drying influences flavor of high-protein dairy products. In the spray-drying of whey ingredients, both a lower pH and higher solids result in lower flavor intensities. Instantized protein ingredients have a shorter shelflife, because lecithin is readily oxidized. Storage time and temperature also impact functional properties, especially for milk protein ingredients.

Food and beverage manufacturers are under pressure from consumers to produce products with natural sweeteners as part of the demand for clean label products. The primary natural, non-nutritive sweeteners in use today are monk fruit and stevia. Increasing protein levels yielded little impact on sweet taste.

Drake and her group use various methods to evaluate sweet taste. Magnitude Estimation Scaling (MES) is used to determine iso-sweet concentrations of each sweetener to sucrose. The Time Intensity (TI) method is an assessment of the intensity of a single attribute, such as bitter or metallic, over time. In the method Temporal Dominance of Sensations (TDS), panelists evaluate multiple attributes at once and select the dominant attribute. TDS shows the sequence of dominant sensations rather than intensities. In the final method, Temporal Check-All-That-Apply (TCATA), panelists may select and deselect various attributes over a period of time. This allows one to track how a product’s sensory characteristics evolve.

“Formulating with Proteins: Processing and Flavor Challenges,” MaryAnne Drake, Ph.D., Professor of Food Science at North Carolina State University, mdrake@ncsu.edu 


Breaking New Ground in Organic & Non-GMO Markets

Posted on:February 16, 2017

February 16, 2017–Global Food Forums, Inc.
The following is an excerpt from the “2016 Clean Label Conference Summary,”
sponsored by Givaudan, RiceBran Technologies, TIC Gums, Blue Pacific Flavors, World Technology Ingredients, Inc. and IOI Loders Croklaan.

Today, 0.6% of total U.S. acres are organic, with a strong organic share in fruits, nuts and vegetables. Currently, organic corn is grown on 235,000 American acres, but 75% of this is used for cows producing organic milk. Convincing U.S. farmers to switch to organic farming is tough, so manufacturers will need to find incentives, such as contracting for and finding uses for all of the rotation crops. [For full size PDF of chart, click on image.]

Grounding manufacturers’ expectations from the strained organic supply chain was the aim of Scott Shander, MSc, Economist, Mercaris, during this presentation. When considering organic product launches, securing supplies can be challenging, and the nuances need to be understood and appreciated.

In the “2014-2015 State of the Industry Report,” The Organic Trade Association showed $39 billion in organic sales, up from $10 billion in 2003. Data concerning organic acreage in the U.S. shows a massive expansion in organic food, compared with limited available acreage to grow organic.

Currently, 36% of organic sales are in fruit and vegetables; interestingly, the emerging organic market includes compound growth rates in snack foods, bread, meats and other packaged foods. “Looking at these categories, meeting this demand will require disproportionate growth in organic grains and oilseeds relative to other crops,” said Shander.

Organic crop rotation is important to manage soil health, pests and weeds. Organic farming requires a multi-year rotation period for growing corn, then alfalfa, soybeans, etc. A significant ramp-up in organic corn production, for example, will also require a ramp-up of other organic crops—including barley, oats, peas, lentils and hay (of which there is currently not much demand)—presenting a significant problem, if demand for these less common crops does not also increase.

“The industries’ short-term solution to supply shortages in the U.S. has been finding international suppliers. Over the last four years, organic corn and soy imports skyrocketed, but the U.S. needs a solution to develop these grains domestically,” noted Shander.

Conventional farmers can currently earn $129 per acre for corn, with organic corn bringing $552 per acre. “At these numbers, why is not every farmer taking action?” Shander asked rhetorically.

“Many reasons make this tough,” Shander went on to explain. “The average farmer in the U.S. is 58 years old; trying to convince them to completely change their business and hire third-party certifiers to tell them how to run the farm can be very difficult.” Furthermore, organic farming requires a 36-month transition period; a large investment to the land; and benefit will not be seen for several years. Many farmers may not have grown anything other than corn or soy. They have no knowledge of other crops—i.e., their uses and their buyers—and they would need to develop completely new relationships in order to farm successfully. Also, a very limited number of organic processing and storage facilities exist.

Currently, in Illinois alone, 74,300 farmers cover 27 million acres, compared with the entire U.S. organic market with 14,870 farmers covering only 2 million acres nationally. A current corn producer has many options to deliver grain from his farm to storage or processing facilities. However, when trying to market organic corn, a farmer is lucky to find even one processing facility, even far away. And, that processor might not be buying corn that day or prices are not competitive; so the farmer needs to try the next buyer, etc. Processers can take advantage of this situation by providing less market transparency and forcing organic farmers to sell crops as needed.

Many organic food manufacturers have moved to 100% imports, developing international relationships with more supply security. Some manufacturers are securing supplies for an entire year by contracting with growers. However, farmers willing to help big food companies with sustainability initiatives need to produce additional materials, like lentils and smaller grains. And there needs to be a home for these, so companies need to find creative uses for rotation crops.

Shander’s final takeaways were that the organic market will continue to grow; innovative manufacturers will take action; and competition will intensify. A competitive edge will exist for companies who can find uses for rotation crops, like the smaller grains and legumes. Organics can be daunting for procurement teams
who will need thoughtful leadership in order to deliver long-term security for these plans.

“Breaking New Ground in Organic & Non-GMO Markets,” Scott Shander, Ph.D., Economist, Mercaris. To access Mercaris reports and analysis on organic and non-GMO markets, please contact Scott Shander, scott.shander@mercaris.com, 312-423-1877


Formulating Protein Beverages: Real World Challenges & Tactical Solutions

Posted on:January 23, 2017

January 23, 2017Global Food Forums, Inc.The following is an excerpt from the “2016 Protein Trends & Technology Report: Formulating with Proteins,” sponsored by Arla Foods Ingredients, Amco Proteins, Givaudan, Orochem Technologies, RiceBran Technologies and Synergy. 

Cline-imageCreating successful protein beverages was the topic of the presentation, “Formulating Protein Beverages: Real World Challenges & Tactical Solutions,” given by Justin Cline, Senior Beverage Scientist at Imbibe. Cline first reviewed protein chemistry and functionality basics.

Protein molecules are either hydrophobic, hydrophilic or electrically charged. When a protein molecule carries a charge, the molecules repel each other in solution. But, by adding acids or bases and bringing the proteins to a net 0 charge (isoelectric point), the molecules are attracted to each other; clump together into a solid mass; precipitate; and fall out of solution.

In beverages, the pH of the isoelectric point should be avoided, as precipitation is not desirable. “Protein properties can be harnessed to build viscosity or create emulsions, or these properties can be detrimental when causing clouding or grittiness in a beverage,” Cline explained.

He advised to determine early the desired protein level and source. The trend is toward packing as much protein into a beverage as possible, but too much can cause issues. “When suspending protein, gums are helpful; for a charge issue, adjusting pH can work. As carbohydrates increase, so does viscosity, and reducing sugars may cause browning. Homogenization can mechanically alter protein structure. These are all issues for consideration,” advised Cline.

Vitamins, minerals, salts, whole grains and other solids all have potential to negatively interact with proteins, especially at higher levels. During processing, order of addition and pH monitoring are key. Emulsions and physical stress on the protein can alter its functionality, and hydration of the protein is very important. Protein is very sensitive to heat, which causes denaturation; and upon cooling, gelling and thickening.

Cline offered several case studies for consideration. “In an average nutritional shake with 3-4% protein, neutral pH (6.6-7) and that uses casein, the protein’s isoelectric point is avoided,” Cline shared.

He recommended grouping ingredients according to their properties during processing. Protein and hydrocolloids should be left on their own to hydrate properly. Vitamins and minerals should be separated from other solids to avoid interactions. In addition, fractionating the water during production is important. Most of the water should be kept for hydration of the protein, for at least 20 minutes. The rest of the water is best retained for hydrating other ingredients, like hydrocolloids.

Each ingredient needs to hydrate separately and completely, so they do not compete for water. This ensures good ingredient functionality, proper stabilization and no grittiness. Cline recommended keeping 5-10% of the water to adjust total solids at the end of processing.

In higher solids beverages, the same rules apply, but interactions with protein are more likely. Commonly used whey proteins are prone to denaturation and thicken at higher temperatures/longer times. “Adjust pH lastly, after everything is added and total solids are adjusted,” Cline instructed. “The whole batch should then be allowed to come to equilibrium and then the pH checked again.It is  important to allow an acid or base to completely mingle with the protein.”

“In high-acid clear beverages with whey protein isolate,” advised Cline, “make sure the protein is completely hydrated, the pH is below 3.5 and few other ingredients, just sweeteners and flavors, are used.”

Beverage stability over time is heavily dependent on protein denaturation. The product may look great when first made, but over time, the denatured protein can build a very unpleasant web or haze that looks like mold.

To summarize a few points, Cline stressed understanding a processing plant’s capabilities. Know that heat processing and protein denaturation release cooked and sulfur notes that mellow over time, as protein reaches equilibrium in a few weeks. Therefore, he recommends refraining from formula changes until the product has properly aged. Also, ask suppliers for information on ingredients, and share as many product and processing details with them as possible—since that aids their understanding in how to help. Cline also urges that shelflife studies be completed before commercialization, as proteins change over time.

“Formulating Protein Beverages: Real World Challenges & Tactical Solutions,” Justin Cline, Senior Beverage Scientist, Imbibe, 847-324-4411, jcline@imbibeinc.com 


Page 19 of 40« First...10...1718192021...3040...Last »
gff_ads_pos1 gff_ads_pos2 gff_ads_pos3

Recent Posts

Recent Comments

Archives

Recent Tags


Copyright© Global Food Forums®, Inc 2018 / all rights reserved