How High-potency Sweeteners Work and What to Do about It

Posted on:July 17, 2017

July 17, 2017–The following presentation is from the “2016 Sweetener Systems Conference Summary,” sponsored by Orochem. All presentations and/or adapted versions made available by the speakers are posted on Global Food Forums Inc’s store pagePlease consider attending our 2017 Sweetener Systems Conference, November 7th, at the Westin Hotel, Lombard, Ill., USA. 

John Fry, 2016 Sweetener Systems Conference

One of the most successful high-potency sweeteners used by food and beverage manufacturers is a combination of fast-taste onset acesulfame-K (AceK) with the more slow-onset aspartame. Together, they more closely mimic the taste profile of sucrose and exhibit synergistic taste intensity. [For larger version of chart, click on image.]

Food scientists have available to them a range of high-potency sweeteners, but are they being used effectively? Maximizing the potential of these ingredients in foods and beverages is of paramount importance to product development. John Fry, Ph.D., of UK-based Connect Consulting, explained, however, that “rather than emphasize how these sweeteners work, I spend a great deal of time talking about how they don’t work and offering remedies.”

To know how to do this, one needs first to understand the physiology
of sweetness receptors. Sweet taste receptors in the mouth are complex protein structures crossing the cell walls of sweet-sensing taste cells. The taste cells are contained within taste buds, distributed in the papillae of the tongue. The buds communicate with the exterior saliva via a taste “pore,” within which are tiny projections of the taste cells, called microvilli. The receptor proteins are on the microvilli and comprise four zones:

1) A “Venus fly trap” structure outside the taste cell and in contact with saliva;
2) an external, cysteine-rich protein chain connecting the Venus fly trap to:
3) a transmembrane zone of seven helical strands of protein, terminating in:
4) an intracellular protein thread that interacts with the taste cell contents and triggers a complex series of biochemical reactions, culminating in a nerve signal to the brain that signifies “sweet.”

The primary route for humans to sense sweetness requires two such receptors, T1R2 and T1R3, intertwined. This arrangement affords multiple points where the proteins can interact with the wide variety of substances we experience as sweet. A given high-potency sweetener generally interacts with only one or two such sites on the receptor complex.

There is, in addition, a secondary mechanism by which humans can also detect the sweetness of certain sugars, but this route does not respond to high-potency sweeteners.

Another aspect of so-called “high-intensity” sweeteners, continued Fry, is that they are actually “low-intensity.” Few can achieve even 10% sucrose equivalent (the approximate sweetness intensity of many fruit juices and soft drinks) on their own.

In contrast, sucrose itself can deliver much higher sweetness intensities. “This is why I prefer to refer to them as ‘high-potency,’ rather than high-intensity sweeteners,” Fry averred. Providing an example of a typical response curve, Fry indicated the maximum sweetening effect of Rebaudioside A (Reb A) occurs at about 5-800ppm concentration and exhibits a sweetness level roughly equivalent to an 8% sucrose solution.

All high-potency sweeteners have similarly shaped concentration- response curves that plateau at some relatively low sweetness intensity. Continued Fry, “So, if you double the concentration of a high-potency sweetener, you do not get double the sweetness. In contrast, sucrose has a linear response of sweetness to concentration.”

In addition, different high-potency sweeteners have different time-intensity relationships that can affect their taste profile. Fry noted that combining acesulfame-K (AceK), which exhibits a quick onset and rapid drop-off of sweetness, with slow-onset, more-lingering aspartame, more closely mimics the sweetness profile of sucrose.

This relationship is also “quantitatively synergistic.” That is, the combined sweetness from these two sweeteners exceeds that which would have been predicted based on the properties of each sweetener alone. (See chart “Synergies of Low-intensity/High-potency Sweeteners.”)

“This suggests that we can get synergistic enhancements of sweetness by combining high-potency sweeteners that react at different parts of the receptor structures,” concluded Fry. Nevertheless, while none of the available high-potency sweeteners
alone generates sweetness intensities greater than that of about 15% sucrose solution, synergistic effects between different molecules also disappear around this level. Despite the fact that synergism will not furnish true high intensities, the effect is much used to maximize the effectiveness and taste quality of zero-calorie sweeteners in foods and beverages.

As Fry explained, use of high-potency sweeteners at levels approaching their sweetness plateau is a costly waste. In addition, at these elevated concentrations, many sweeteners exhibit intrinsic off-tastes (e.g., a bitter-metallic taste for saccharin). Blends allow product developers to keep individual sweeteners below the thresholds for off-taste development, while achieving quantitative synergies and, thus, minimizing cost.

Fry addressed other factors that can enhance the effectiveness of high-potency sweeteners, particularly in relation to typical issues of slow onset and lingering sweetness. Citing the “non-specific binding” hypothesis, he noted that increasing the osmotic pressure of food and beverage systems “compresses the time-intensity profiles of sweeteners,” thus speeding onset and reducing linger to produce more sucrose-like taste dynamics with almost any high-potency sweetener.

Hydrocolloids, sometimes used to remedy mouthfeel losses when sugars are removed, can also benefit the dynamics of sweetness perception by reducing the impact of non-specific binding. However, “perhaps the ultimate solution to the different taste qualities of high-potency sweeteners is not to use them at all,” suggested Fry. He pointed to a relatively new category of compounds, known as positive allosteric modulators (PAMs), that have no sweetness or flavor of their own but can greatly enhance the sweetness intensity of conventional sweeteners, such as sucrose.

Reduced-sugar formulations could thus be made that still deliver full sweetness and with all the taste qualities of the original sugar.

“How High-potency Sweeteners Work and What to Do about It,” John Fry, Ph.D., Director, Connect Consulting,

Caloric Sweeteners and Health: What is the Truth?

Posted on:June 15, 2017

June 16, 2017–The following presentation is from the “2016 Sweetener Systems Conference Summary,” sponsored by Orochem. All presentations and/or adapted versions made available by the speakers are posted on Global Food Forums Inc’s store pagePlease consider attending our 2017 Sweetener Systems Conference, November 7th, at the Westin Hotel, Lombard, Ill., USA. 

Panel: Sweeteners and Nutrition: New Developments & Reality Checks
Panel #1: Caloric Sweeteners and Health: What is the Truth?

Obesity results from a failure to achieve energy balance. It is unclear whether susceptible individuals become obese because their physiological mechanisms of food intake control are compromised, or whether these same control mechanisms are overridden and compromised by environmental factors (e.g., sedentary lifestyles). [For larger version of chart, click on image.]

G. Harvey Anderson, Ph.D., University of Toronto Professor of Nutritional Science and Physiology, got straight to the point: “There is insufficient evidence upon which to make public policy regarding caloric sweeteners consumption—but the horse has left the barn—and we must deal with the consequences.”

Caloric sweeteners are under siege. Very recently, the U.S. National Science Foundation’s Institute of Medicine (IOM) declared there was insufficient evidence upon which to set upper limits to caloric sweetener consumption, but it nonetheless recommended that they constitute no more than 25% of total calories. This recommendation was based not upon health issue mitigation, but on preventing the displacement of foods that contribute essential nutrients to the diet.

In contrast, the 2015 Dietary Guidelines Advisory Committee declared that caloric sugar consumption should be limited to no more than 10% of dietary calories, due to “negative impacts” on type II diabetes, cardiovascular health and dental caries. The WHO also supported a policy of limiting caloric sweetener consumption to no more than 10% of the diet and, perhaps, to less than 5% of the diet. “And…there is now talk of imposing world-wide sugar consumption taxes,” said Anderson.

“Obesity is the public health concern that started this campaign,” explained Anderson. “We know that obesity comes from excess food intake, meaning an energy imbalance, but it remains unclear whether obesity develops from physiological systems that
make us susceptible to environmental causes, such as sedentary lifestyles, or from environmental causes alone.”

Therefore, caution is warranted.

With respect to the U.S. Dietary Guidelines, for example, “We know that many of the guidelines have proven themselves wrong, over time. We keep shifting around claims, such as fat causes obesity or cardiovascular disease, only to have them later proven wrong.” This has hurt the credibility of nutritional policy-making.

Sweeteners are a normal part of life, and humans are exposed to sweet tastes from in utero to death. There are also many benefits to sweet foods. They tend to be safe; easy to store; easy to transport; require no preparation; and are relatively inexpensive. In addition, caloric sweeteners can play important roles in rendering highly nutritional products palatable, such as bitter fruit (e.g., cranberry) or high-fiber cereal products (e.g., cereal or granola bars).

So, given all these considerations, what does the evidence say? Anderson referenced the work of his University of Toronto colleague, John Sievenpiper, MD, Ph.D., FRCPC. Sievenpiper undertook a systematic review of all published studies linking sweetener consumption to health concerns, in order to critically assess whether caloric sweeteners cause diabetes and obesity (as per the U.S. 2015 Dietary Guidelines Advisory Committee). He determined that no studies had been able to statistically link caloric sweetener consumption levels to either obesity or diabetes.

Such absences of associations were found for both sucrose and fructose. Certainly, no documented associations were found that could justify public policy-making on caloric sweetener consumption, summarized Anderson.

Sievenpiper also referenced studies that linked the consumption of specific foods to weight gain. Here, a weak but statistically significant association was found between weight gain and sugarsweetened beverage consumption. But, similar gains were also found for French fries, potato chips, nuts, potatoes and, even, yogurt. In sum, the studies appeared only to prove that increased energy consumption leads to weight gain. “If you eat more, you get fatter,” summarized Anderson.

Effects of sugar-sweetened beverage intake on obesity were also more difficult to categorize. Many food intake studies rely upon consumer recall. In general, people can recall their frequency of consumption much better than their quantity of consumption, said Anderson. It also can’t be ascertained whether sugar-sweetened beverage consumption levels translate directly into weight gain or serve as markers for other lifestyle factors that relate to obesity (e.g., sedentary lifestyles).

Put together, these results are inconclusive, maintained Anderson, and there remains far more work to be done before public policy-makers can credibly recommend optimal levels of caloric sweetener consumption.

“Caloric Sweeteners and Health: What is the Truth?” G. Harvey Anderson, Ph.D., University of Toronto Professor of Nutritional Science and Physiology,


Insights into Challenges of Labeling “Added Sugar”

Posted on:June 6, 2017

June 6, 2017 — Why hold a conference on sweetener systems?

Sweetness-enhancing components have long been added to recipes, as well as packaged foods and beverages. However, the perception of sweetness and the impact of any one sweetener ingredient is highly influenced by other ingredients in a food matrix. The need for up-to-date information on sweeteners by product developers has increased. This is because there have been ingredient technological advances; and because there is increased complexity in the sweetener systems used. Other factors include evolving consumer attitudes, progress in nutritional science and, lastly, changes in regulations.

Global Food Forums, Inc. launched its first Sweetener Systems Trends & Technologies Conference (since renamed Sweetener Systems Conference) on November 2, 2016, in
Lombard, Ill., USA. The event proved successful beyond expectations— with over 160 registrants and an abundance of very positive comments. A brief summary of the excellent presentations from this year’s program is provided here.

All presentations and/or adapted versions made available by the speakers are posted on Global Food Forums Inc’s store page.

Please consider attending our 2017 Sweetener Systems Conference, November 7th, at the Westin Hotel, Lombard, Ill., USA. 

The following is the first of the presentations from the “2016 Sweetener Systems Conference Summary,” sponsored by Orochem.

Insights into Challenges of Labeling “Added Sugar”

Although entailing but a small change to a food or beverage’s nutritional label itself, the FDA’s recently mandated label change to include “added sugar” poses considerable analytical challenges for processors. [For a larger version of chart, click on image.]

Dietary sugar reduction is a global health objective, as per the United Nations’ World Health Organization (WHO). Thus, the compliance challenges posed by the U.S. Food & Drug Agency’s (FDA) recently published requirement to include “added sugar” as a subhead to the line-item “sugars” on the nutritional label have global implications for all food regulatory agencies.

David Ellingson, MSc, Senior Research Chemist and Project Manager with Covance, an international research laboratory, addressed two issues that should be of primary concern:
1) Industry’s inability to discern between naturally present and added sugars; and
2) the need to establish requirements for dynamic sugar concentrations that vary as a function of processing and storage.

“The FDA regulation defines ‘added sugars’ as either free sugar (mono- and disaccharides), syrups or ‘sugars from concentrated fruit or vegetable juices that are in excess of what would be expected from the same volume of 100% fruit or vegetable juice of the same type,’” explained Ellingson.

There are four exceptions:
1) Fruit or vegetable juice concentrated from 100% juices sold to consumers;
2) fruit or vegetable juice concentrates used towards the total juice percentage label;
3) fruit juice concentrates used to formulate the fruit component of jellies, jams or preserves, or the fruit component of fruit spreads; and
4) lactose from milk.

“There are three high-level scenarios with respect to a product analysis: one being where all sugar is added; one being both natural and added; and a third where all sugars present are natural,” continued Ellingson.

“Typically, when we do an analysis for sugar in our labs, we are looking for these six: glucose, galactose, fructose, sucrose, maltose and lactose. We utilize HPLC and GC applications,” Ellingson noted. Whereas ion chromatography with pulsed amperometric detection is becoming the norm for HPLC-type applications, “more robust” gas chromatography techniques are still popular—even though they require derivatization of sugars prior to analysis. For quick, in-line production screening, a technology such as Fourier Transform Infrared (FTIR) spectroscopy may be quite adequate. However, he stressed, none of these techniques is capable of distinguishing between “natural” and “added” sugars!

“If a more forensic analysis is needed, laboratories have available a range of analytical techniques to identify the source of a sugar on a qualitative level,” explained Ellingson. Although more sophisticated isotope analyses can distinguish between C12 (found in cane and corn sugars) and C13 (found in maple and beet sugars), they cannot pinpoint the source origin of all sugars. Nonetheless, isotope analyses do offer limited use in identifying adulterants in products and ingredients.”

Continued Ellingson, “By farthe most difficult analytical challenge is when fruits or vegetables that have innate amounts of sugars are mixed with ‘added’ sugars, such as sweetener syrups, to improve taste or sweetness.” This includes products such as juice drinks, breakfast cereals and yogurt beverages.

Providing analytical chemists with a product’s formula in advance allows them to analyze the areas under chromatographic peaks and roughly estimate total sugar contents. If the chromatographic profiles conform to the formula provided, all may be well. However, it is much more difficult to determine whether a food, beverage or ingredient has been adulterated—and by how much—using only such techniques. Analysis of carbon isotope profiles and other impurity markers can flag possible adulteration—but not always.

An additional complication is when non-enzymatic browning, fermentation or other processes affect total sugar content during processing or storage. This is an important consideration for heat-treated products rich in amino acids, sweeteners, and fruit and vegetable ingredients, such as soups or sauces.

When asked a question about how one could establish a label declaration for sugar content for products exhibiting starch breakdown during storage due to acid hydrolysis, Ellingson allowed that this could be a complicating factor: At what point in the process or retail distribution of such products can an accurate determination of sugar content and profile be made? Perhaps a petition to the FDA for a labeling exception would be merited in such cases; the FDA regulations do allow companies to petition for exceptions.

[Note: The final, published FDA “added sugar” labeling regulation can be found in: FDA Federal Register/Vol. 81, No. 103/Friday, May 27, 2016/Rules and Regulations].

“Insights into Challenges of Labeling ‘Added’ Sugar,” David Ellingson, MSc, Senior Research Chemist and Project Manager, Covance,

Investments & Acquisitions in Protein Industries

Posted on:May 1, 2017

May 1, 2017Global Food Forums, Inc.’s fourth annual Protein Trends & Technologies Seminar was held in Oak Brook, Ill., USA. A Pre-conference: Business Strategies program was held on May 3rd, 2016, followed by a Technical Program: Formulating with Proteins on May 4th.

Speakers at the Pre-conference provided information for upper-level managers to help them guide their company’s protein ingredient business, and for those for whom the protein ingredient marketplace has significant impact on new product development strategies and/or their operations.

The following is the first of the presentations from the “2016 Protein Trends & Technologies Seminar: Business Highlights Summary” special report.

In 1960, experts estimated that the amount of food needed by the world in 1990 would double. Today, experts are saying the same doubling of the food supply will be needed by 2050, said Matthew Roberts, CSO for Nature’s Bounty (NBTY), in his Protein Trends & Technology Seminars presentation titled “Perspectives on Investments & Acquisitions in the Protein Supply and Finished Products Industry.” However, unlike 1960, the challenge now is a question of land resources. About 12% of the world’s land area is arable; another 26% can be used for grazing. However, those areas are declining.

When this data was released in early 2016, there were already more than 160 new plant-based protein food product launches for 2016, noted Roberts. [Click on the image for a larger PDF of the chart.]

The answer, Roberts said, must be plant proteins—and not only due to resources, but because of growing consumer concerns for health, climate change and animal welfare. “I think we’re in a really important time, not only as industry professionals, but also as human beings. The nature of food, agriculture and nutrition is changing, and protein is center-stage.”

In 1945, half of the world was malnourished, compared to roughly 15% today. However, one billion people have protein-deficient diets. “We’re being squeezed on the animal-production side but, on the plant side, we’re increasing production,” Roberts added.

Plant proteins are on the rise across all nutrient supplements. Some 41% of adults made an effort to limit/avoid meat in 2013, Roberts said. The vegetarian retail market reached $1.6 billion in sales in 2011 and has been rising ever since. Plant-based protein food product launches have likewise risen, according to Mintel, from about 150 in 2011 to more than 350 in 2015. (See chart “Plant-based Protein Food Product Launches.”)

“Vegetarianism has been on the rise for a number of years, but what we’re starting to see is the halo effect—with friends, family and extended network being influenced,” Roberts said. “They may not want to be vegetarian, but they appreciate the lifestyle; hence the rise of the flexitarian.”

More than half of U.S. consumers report eating some sort of meat alternative, including eggs, multiple times a week. Consumption of meat alternatives is also increasing in Europe, as 31% of Germans, 38% of French and 45% of Italians claim to be actively reducing consumption of red meat.

That said, plant proteins have some struggles. On the nutritional side, there are factors like fiber and under-availability of leucine that reduce protein absorption and muscle synthesis. On the consumer side, there are spreading health misconceptions about soy. Younger consumers are the most likely to seek meat alternatives for protein. However, soy is contending with negative health perceptions—even though studies have indicated otherwise—making Millennials highly likely to avoid it. Mintel’s free-from food statistics show that 18-24, 25-34 and 35-44-year-old internet users all seek out “soy-free” at high rates.

Soy is still big in Asia, however, with plant proteins eaten by 86% in China, 59% in Germany and roughly a third in both the U.S. and UK in 2014. Asia’s wide acceptance of soy makes it a prime target for other plant protein sources, Roberts added.

Plant proteins are estimated to account for 43% of the total protein ingredients market volume, according to Frost & Sullivan, with soy in the lead, followed by wheat, and then pea, which experts believe to have strong growth potential. Soy likewise leads the way for plant-based protein used in new food and drink launches from 2012-2014 (at 60%), followed by wheat (24%)—then pea (7%), rice (3%) and maize (2%).

The business world has begun investing in plant proteins. Cargill sold its pork business and opted to acquire a Norwegian agriculture company. Monde Nissin bought Quorn, and White Wave bought Vega—while Hormel, Glanbia, Post, Hershey and General Mills have also made moves. Almond milk is now a $1.3 billion segment dominated by three players, and plant-based beverages are 7.5% of milk dollar sales and growing at between 20-30%. Food and ag tech attracted $3.5 billion in venture capital globally in 2015, mostly going to increase yields and decrease inputs, but much of it concerns proteins.

The future will both bring new products—plant alternatives are already entering the ice cream, yogurt, cheese and creamer sectors—as well as protein system blends, Roberts said. Imagine combining characteristics like the ROI of soy, the supply of corn, the elasticity of algae, the label claims of wheat and so forth. “There’re a lot of good reasons to do that—from an economic perspective; from a sustainability perspective; and from an agricultural perspective,” he added.

“Sustainable Protein: Nourishing the Population While Protecting the Environment,”
Matthew Roberts, CSO, Nature’s Bounty

Next Generation Protein Opportunities: Sustaining the Rush

Posted on:April 18, 2017

April 18, 2017Global Food Forums, Inc.’s fourth annual Protein Trends & Technologies Seminar was held in Oak Brook, Ill., USA. A Pre-conference: Business Strategies program was held on May 3rd, 2016, followed by a Technical Program: Formulating with Proteins on May 4th.

Speakers at the Pre-conference provided information for upper-level managers to help them guide their company’s protein ingredient business, and for those for whom the protein ingredient marketplace has significant impact on new product development strategies and/or their operations.

The following is the first of the presentations from the “2016 Protein Trends & Technologies Seminar: Business Highlights Summary” special report.

Half the U.S. population is over 50—a group whose interest in exercising has noticeable increased.

Capitalizing on the Next Generation of Protein Opportunities: Sustaining the Rush

When looking at protein demographics data, the tendency is to focus on the X, Y and Millennial generations—and on how to create new products that appeal to those consumers. In discussing the next generation in protein opportunities, A. Elizabeth Sloan, Ph.D., President, Sloan Trends, Inc., recommended looking to other segments, as well.

Boomers are turning 70 and are taking what was familiar when they were young and bringing it along as they age. “Half the U.S. population is over 50; that’s where the money is,” Sloan said.

“Tiredness/Lack of Energy” is one of the top consumer concerns of those 50 and over. The connection of protein to both physical and mental energy is emerging. “Providing physical and mental energy to help adults and children get through the day and remain alert/energized is a top motivator” to get consumers to eat breakfast. The concept that foods can naturally provide energy is both believable and well-understood. More than half of 18-24-year-olds, for example, are regular energy drink users, Sloan pointed out. Protein drinks could be reformulated to better match the needs and interests of those older, as well, she suggested.

The $31 billion sports nutrition sector has expanded into the mainstream in recent years. The number of people regularly exercising has increased, with the most noticeable group being the 50+ crowd. Activities such as gym usage (14%), aerobic exercise (46%), walking (25%) and running (87%) have all gone up in the past five years.

When the 50+ group is asked about solutions to their health concerns, the number one response, consistently, is exercise. Mobility is a major consumer concern for aging consumers, and it’s firmly tied to weight loss and muscle loss—two areas already firmly aligned with protein. According to a 2014 Gallup “Study of U.S. Market for Vitamins & Other Dietary Supplements,” 30% of adults mention age-related muscle loss and loss of strength as issues of concern. Sloan added that “aligning joints with muscle and protein is a very big idea.”

Consumers link protein to muscle health exercise recovery, satiety, energy and weight loss (all more than 60%); lately, a new focus has been on protein to improve hair, skin and nail health (32%). Additionally, according to the “2014 Gallup Study of Protein,” 33% of adults surveyed also associate immunity as a health benefit of protein.

Consumers turn to protein for weight loss, and this area is “quietly on fire,” Sloan said. It’s up 7% in the last year, and the weight-loss business in the past five years has been driven primarily by men (69% of the growth), especially young ones.

Older women are trying to lose weight, while more senior women are trying to maintain weight. Women 55+ are the biggest bar consumers. “The largest untapped market in the U.S. is post-menopausal women,” Sloan advised. Linking weight control and proteins for this group is an opportunity.

In grocery meat cases, many retailers now provide nutrition information for fresh meat/poultry. Millennials want more energy, iron and protein—so retailers also call out protein in the produce department. Said Sloan, “Those buying fresh, minimally processed food are the same group who buy fortified foods and who want added nutrition and nutrition claims on fresh/refrigerated foods.”

Millennials still drive several protein trends, including plant-based proteins: 76% of households ate protein alternatives for weekly dinners last year, while the use of meat/poultry fell to an average of 3.7 times/ week. There is a $2.7 billion opportunity in plant-based dairy foods, beyond beverages, Sloan added.

Millennial parents drive opportunities in the $41 billion kid-specific market. More than 50% of parents are concerned about development and protection against diseases later in life. Some 47% of households with children actively seek out protein.

Another new arena for protein is the pet food market, which always follows human food trends. Also, the Latino, Asian and African-American segments are all more likely to seek out protein claims compared to Caucasians; this also is a relatively untapped arena.

“Capitalizing on the Next Generation of Protein Opportunities: Sustaining the Rush,” A. Elizabeth Sloan, Ph.D., President, Sloan Trends, Inc.,, 760-741-9611,

Page 1 of 2412345...1020...Last »
gff_ads_pos1 gff_ads_pos2

Recent Posts

Recent Comments


Comments and RSS

Recent Tags

Copyright© Global Food Forums®, Inc 2016 / all rights reserved